Text Problems: 4.83 (30 pts)

Non-text Problems:

1. (10 pts) Derive simplified equations for sphere/plane contact and cylinder/plane contact.

2. (30 pts)

 (a) Derive the relation between load factor of safety (n_L) and the strength factor of safety (n_s) for spherical surface fatigue applications.

 (b) A spherical ball of $r = 10.0 \text{ mm}$ in a self-aligning bearing carries a load of 3.0 N, as in figure 1. The spherical seat has $r = 35 \text{ mm}$. Use a factor of safety for the surface fatigue stress of $n_s = 1.25$ and a factor of safety for the load of $n_L = 1.5$. All parts are made of steel ($E = 200 \text{ GPa, } \nu = 0.3$).

 Determine what ultimate strength the steel needs to be in order to withstand a lifetime of 1×10^9 cycles.

3. (30 pts) An experiment was performed using a cylindrical 1045 steel slider heat treated to a yield stress of $S_y = 128 \text{ ksi}$, pressed endwise against a steel disk with no lubricant. It was found that for a relative sliding velocity of 0.67 ft/sec, the 0.031 inch diameter slider, loaded by a 40 lb axial force, produced a slider wear volume of $5.8 \times 10^{-8} \text{ in}^3$ during a test of 40 minutes duration.

 (a) If the same material combination is to be used in a slider-bearing application at a sliding velocity of 3.0 ft/sec under a bearing load of $P = 100 \text{ lb}$, and if the slider is to be square, what side dimension, s, should it have to assure a lifetime of 1000 hours, if a maximum wear depth of 0.050 inches can be tolerated? See figure 2 for a diagram of the slider to be designed. The experimental slider has the same setup, except it is a cylinder.

 (b) Check the design in 3a material against yielding.

\[
F = 3.0 \text{ N}
\]

![Figure 1: Figure for problem 2b](image-url)
Figure 2: Figure for problem 3