Text problems: 4.6, 4.27

Bonus (15 pts): Prove that the max shear stress at the neutral axis, for a circular cross section, can be correctly computed using \(Q = A^*\bar{y}^* \).

Non-text problems:

1. You want to design a thin-walled spherical tank to hold gases for a chemical reaction. The gases are held in this tank at a pressure of 500 psi. You need to hold 100 ft\(^3\) of these gases. What are the radius and thickness of the tank if the material has a yield stress of \(\sigma_y = 30 \text{ ksi} \)? Remember that \(r_o \approx r_i \approx r \). Use a factor of safety of 2.

2. For the system in figure 1, determine the following:
 (a) The diameter required in the circular section of the torsional member.
 (b) The values of \(b \) and \(h \) in the right part of the torsional member, assuming that \(b = h \).

Both sections consist of the same material with \(\tau_{max} = 30 \text{ ksi} \)

![Figure 1: Two-sectioned torsional member](image)